Hardy's inequality with weights

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inequality for eigenvalues of quasilinear problems with monotonic weights

In this work we extend an inequality of Nehari to the eigenvalues of weighted quasilinear problems involving the p-laplacian when the weight is a monotonic function. We apply it to different eigenvalue problems.

متن کامل

ISOPERIMETRIC INEQUALITY, Q-CURVATURE AND Ap WEIGHTS

A well known question in differential geometry is to control the constant in isoperimetric inequality by intrinsic curvature conditions. In dimension 2, the constant can be controlled by the integral of the positive part of the Gaussian curvature. In this paper, we showed that on simply connected conformally flat manifolds of higher dimensions, the role of the Gaussian curvature can be replaced...

متن کامل

Markov-bernstein Type Inequality for Trigonometric Polynomials with Respect to Doubling Weights on [−ω, Ω]

Various important weighted polynomial inequalities, such as Bernstein, Marcinkiewicz, Nikolskii, Schur, Remez, etc. inequalities, have been proved recently by Giuseppe Mastroianni and Vilmos Totik under minimal assumptions on the weights. In most of the cases this minimal assumption is the doubling condition. Here, based on a recently proved Bernstein-type inequality by D.S. Lubinsky, we establ...

متن کامل

Inequality Problems of Equilibrium Problems with Application

This paper aims at establishing the existence of results for a nonstandard equilibrium problems $(EP_{N})$. The solutions of this inequality are discussed in a subset $K$ (either bounded or unbounded) of a Banach spaces $X$. Moreover, we enhance the main results by application of some differential inclusion.

متن کامل

Davenport constant with weights

For the cyclic group G = Z/nZ and any non-empty A ∈ Z. We define the Davenport constant of G with weight A, denoted by DA(n), to be the least natural number k such that for any sequence (x1, · · · , xk) with xi ∈ G, there exists a non-empty subsequence (xj1, · · · , xjl) and a1, · · · , al ∈ A such that ∑l i=1 aixji = 0. Similarly, we define the constant EA(n) to be the least t ∈ N such that fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1972

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-44-1-31-38